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ARTICLE INFO ABSTRACT
Article history: This study presents a novel hybrid bearing condition monitoring

model, CosWNN, which integrates cosine difference and weightiness
within the k-nearest neighbors algorithm. The model addresses key
challenges in vibration analysis, specifically the need for efficient
computational resources and the scarcity of real-world faulty bearing
data. By minimizing signal processing requirements and maintaining
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1. Introduction

Monitoring of operating bearing’s condition is important to reduce occurrence of machine failure as well with
safety mishap [1]. Vibration analysis is one of the main approaches by acquiring the machine’s vibration signal
using accelerometer, these signals exhibit different characteristic depending on types of bearing fault compared
with healthy conditions [2]. As the artificial intelligence (A.I) gaining research attentions, A.IL. algorithms are
widely applied in monitoring model to classify the bearing conditions [3]. In this study, a bearing monitoring
model by integrating Cosine-Difference and Weightiness in Nearest Neighbors (CosWNN) is developed, with
objectives to improves the real-world’s shortcoming of the following:

e Requirement of computation resources: More powerful processors and memory are essential for signal
processing and model training [4].

e Limited data for Model’s training: Real-world faulty bearing data is hard to acquired due to operating
machine is either broke down or forced stopped when fault is alerting [5].

2. Literature Survey

A brief survey was conducted in this study, the recent solutions of mentioned challenges were discussed, and
the survey finding was summarized.

2.1 Challenges
2.1.1 Challenge 1: Efficiency in Computation Resources
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Signal processing and A.l. model training is associated to costly data acquisition panels and complicated
program which increasing cost of condition monitoring system [6], [7]. Erica et. al explored an affordable-
cost and compact alternative by measuring acoustic noise and sampled by a microcontroller, however the
vibration data transformation such as FFT (Fast-Fourier-Transform), and top-flat windowing were inevitable
in the system [6]. Thani et. al proposed an A.I. model which analyses raw vibration data using Auto-Encoder
as feature extractor, a classification of 90.3% (F1-score) was achieved however the model training time was
longer [4].

2.1.2 Challenge 2: Training of Model with Limited Data

Most of the intelligent condition monitoring system are data-driven, the classification performance depends on
the amount of training information [8]. Yang et. al adopted Conditional-Generative-Adversarial-Network
(CGAN) for synthesize training data and processed it into 2-D image [8], [9]. Zhang et. al applied few-shot
learning with pair of Siamese Convolutional Neural Networks (CNN), accuracy of 82.8% was found with only
60 training samples in raw vibration signals [9].

2.2 Survey Finding

As the survey finds, there is lack of studies which addressed the efficient computational resource and limited
training data challenges. Therefore, CosWNN aims to perform acceptable classification results by taking data
inputs without signal processing, while retaining performance with limited training data.

3. Methodology
3.1 Algorithms

Nearest Neighbors algorithm (also known as k-NN) is a classic A.I. method to determine the calculated
distance between testing and training data [10]. The training data in k-NN is stored in the model rather than
trained as compared to other A.l. methods. Hence the computation resources required for model training is
excluded for k-NN [11].

3.2 Hyperparameters

In this study, multiple k-NN algorithms were evaluated using MATLAB’s Classification Learner Toolbox [12],
subsequently the CosWNN model was developed by integrating two of the k-NN algorithms. Table 1 shows
the algorithms studied and corresponding hyperparameters.

Table 1. The algorithms studied and corresponding hyperparameters.

. . L. Quantity of Difference .y
k-NN Algorithm Abbreviation Neighbo);'s Metric Weightiness
Fine-k-NN Fk-NN 1 Euclidean Identical
Medium-k-NN MKk-NN 10 Euclidean Identical
Coarse-k-NN Ck-NN 100 Euclidean Identical
Cosine-k-NN Cosk-NN 10 Cosine Identical
Cubic-k-NN Cubk-NN 10 Minkowski Identical
Weighted-k-NN Wk-NN 10 Euclidean 1/Squared
Proposed Hybrid Model CosWNN 10 Cosine 1/Squared

3.3 Cosine-Difference
The proposed hybrid model is established on the Cosine-Difference [2] as below
De (J,K) = 1 - Sc(],K)
J.K
=1 —-—
TN
-1- Zx=1JxKx )

/Z§=11§ . TRo1KZ

Note: Dc is the Cosine-Difference, Sc is the Angular Similarity, J is the Testing data in time-series, and K is
the Stored data in time-series.
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3.4 Weightiness

Encompassing Weightiness on the Cosine-Distance can potentially boost A.l. algorithms’ result compared to
identical weight [10], [13]. The Weightiness technique manipulated in the proposed algorithm is 1/ Squared’
as shown

1

w;(J,K) = DUz
Note: w is the Weightiness.

(@)

3.5 Set of Rules

The algorithm of proposed hybrid model is described in Table 2 as following
Table 2. The Algorithms of Proposed Hybrid Model.
CosWNN Set of rules

Initial:

J, ¢, K /I J: testing information; c: class; K: stored information
for n to training information dimension do:
Determine the cosine-difference Dc(J,K) as illustrated in formula (1)
end for
Choose the anticipated k (quantity of nearest neighbors)
Sort the Dc by rising sequence
Calculate the observation of each class of the highest k
Multiply the w for each observation
Yield:
Delegate J to the maximum gathered w of class, ¢

3.6 Data Source

2 sets of bearing data were adopted for algorithm are: (a) Case-Western-Reserve-University Bearing (CWRU);
(b) SpectraQuest Machinery Fault Simulator by Universiti-Teknologi-Malaysia (UTM). The explanation of the
datasets is elaborated in Table 3.

Table 3. The bearing description of used datasets.

Dataset CWRU UTM

Bearing Model 6205-2RS JEM SKF SpectraQuest customised bearing
Motor Load (hp) 0

Rotational Speed (rpm) 1772 1800

Sampling Rate (Hz) 12000 8000

No-Defect-(N), Outer-Race-Defect-(OR),

Class of the condition of bearings Inner-Race-Defect (IR), and Ball-Defect-(B)

3.7 Model Training
Several nearest neighbors of model versions were trained with different training amount of training samples is
listed in Table 4. All the models were tested with separate labelled samples.

Table 4. The amount of training samples used for model training.

Training Sample Amount T100 T80 T60 T40 T20
No-Defect-(N)
Outer-Race-Defect-(OR) 150 120 90 60 30

Inner-Race-Defect (IR)
Ball-Defect-(B)
Overall 600 480 360 240 120

3.8 Quantification Of A.I Results

Classification Accuracy is used to quantify the results of A.I. models as commonly adopted by other researchers
[16]. The Classification Accuracy is explained as follows
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__TPHTN __ « 100 (3)
TP+UP+FN+UN

Note: TP =observed true positives; TN = observed true negatives;
UP =observed untrue positives; and UN = observed untrue negatives.

4. OUTCOMES & discussions
4.1 Findings

Classification Accuracy (%) =

The results of the proposed hybrid model for CWRU and UTM datasets and an average of the two datasets are
displayed in Figure 1. Both CWRU and UTM datasets produced similar results with overall accuracy of 78.8%
and 75.3% respectively. the highest accuracies were achieved when the amount of training samples was 100%
utilized, and degradations were observed when the training samples were reduced. An average classification
accuracy of 77.1% was calculated for the proposed hybrid model.

Classification Accuracy of CosWNN

100.00%
95.00%
90.00%
85.00%
80.00%
75.00%
70.00%
65.00%
60.00%
55.00%

50.00%
’ T100 T80 T60 T40 T20 Overall

=—=CWRU | 86.17% @ 84.17% = 80.83% = 78.17% | 64.83%  78.83%
e UTM 85.17%  81.67% = 77.13% = 71.91% | 60.67% = 75.31%
Average 85.67% | 82.92% = 78.98% = 75.04% @ 62.75% | 77.07%

Figure 1. The classification accurateness of proposed hybrid model.

The average results are compared with other nearest neighbors are illustrated in Figure 2. All algorithms except
for CosWNN and Cosk-NN were found to perform poorly in bearing condition’s classification below 50%.
Cosk-NN obtained a relatively decent performance with an average of 72.7%. By integrating the weightiness
into Cosk-NN, the proposed hybrid model showed an improvement of 4.4% over Cosk-NN. Nevertheless,
CosWNN’s classification degradation up to 22.9% in event of the reduction of training samples were observed.

Averaged Classification Accuracy among different Nearest
Neighbors Algorithm

100.00%

90.00%
80.00% —_——

70.00% V
60.00%

50.00%
40.00% S
30.00% —_——
20.00%

* 1 T100 T80 T60 T40 T20 Overall

=—=CosWNN 85.67% = 82.92% = 7898% = 75.04%  62.75%  77.07%
e F-NN 48.75% | 45.42%  39.59%  37.59% | 35.25% @ 41.32%

Mk-NN 29.25% | 29.25% @ 29.92% | 27.33% @ 26.25% @ 28.40%
e Ck-NN 28.42% | 34.59%  25.09% = 25.00% | 25.00% @ 27.62%
e Cosk-NN = 83.84% = 78.59% = 74.34% @ 70.42% @ 56.42% @ 72.72%
== Cubk-NN  29.25% = 28.33% = 28.17% @ 26.42%  26.58%  27.75%

Wk-NN 32.34%  31.25% @ 31.33% @ 28.83%  27.67%  30.28%

Figure 2. Averaged Classification Accuracy among different Nearest Neighbors Algorithm.

EAST-J Vol. 3, No. 1, 2025: 10-14



EAST-J e-ISSN: 2948-4065 13

4.2 Discussions

Most of the nearest neighbors’ difference metric were found to be ineffective to classify vibration signals
without signal processing except for Cosine-Difference. The preference of Cosine distance over Euclidean and
Minkowski distances shall be validated with other datasets, for example unprocessed signals of Machinery
Fault Database (MaFaulDa) and Paderborn University[17].

Integrating Weightiness into the proposed model showed an average 4.4% over the predecessor (Cosk-NN),
hence hybridizing Cosine-Difference and Weightiness method in the nearest neighbors could potentially
improves the overall classification results.

Although the proposed hybrid model showed improvement over other algorithms, an average of 77.1%
classification accuracy is not considerable excellent, and an averaged degradation up to 22.9% when training
samples were reduced. More improvements of the condition monitoring model are recommended to fulfill the
objectives of this study.

One of the recommendations is to optimize the selection of k (number of nearest neighbors) rather than using
the default k=10. Other than that, if limited training data is available, data augmentation shall be explored as
suggested by other studies [18], [19].

Conclusion

In conclusion, this study addresses the challenges of efficient computation resources and limited training data
in bearing fault detection by developing a hybrid monitoring model integrating cosine-difference and
weightiness into the k-nearest neighbors algorithm. The proposed CosWNN model achieved a classification
accuracy of 77.1%, surpassing other algorithms by 4.4% to 49.5%, especially under conditions of insufficient
training data. Despite this improvement, the model's performance degrades significantly with reduced training
samples, highlighting the need for further optimization, such as refining the selection of the number of nearest
neighbors (k) and exploring data augmentation techniques. The hybrid model demonstrates potential for
effective bearing condition monitoring with limited faulty data and minimal signal processing resources,
warranting further validation with additional datasets and enhancements.
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