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This study presents a novel hybrid bearing condition monitoring 

model, CosWNN, which integrates cosine difference and weightiness 

within the k-nearest neighbors algorithm. The model addresses key 

challenges in vibration analysis, specifically the need for efficient 

computational resources and the scarcity of real-world faulty bearing 

data. By minimizing signal processing requirements and maintaining 

classification accuracy with limited data, CosWNN achieves an 

average accuracy of 77.1%, outperforming traditional nearest 

neighbors algorithms by 4.4% to 49.5%. Despite these advancements, 

the model's performance diminishes with fewer training samples, 

indicating the necessity for further optimization, including the 

adjustment of the quantity of nearest neighbors and the incorporation 

of data augmentation techniques. The study underscores the potential 

of CosWNN for robust bearing fault detection and its applicability in 

scenarios with constrained data and computational resources. 
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1. Introduction 

Monitoring of operating bearing’s condition is important to reduce occurrence of machine failure as well with 

safety mishap [1]. Vibration analysis is one of the main approaches by acquiring the machine’s vibration signal 

using accelerometer, these signals exhibit different characteristic depending on types of bearing fault compared 

with healthy conditions [2]. As the artificial intelligence (A.I) gaining research attentions, A.I. algorithms are 

widely applied in monitoring model to classify the bearing conditions [3].  In this study, a bearing monitoring 

model by integrating Cosine-Difference and Weightiness in Nearest Neighbors (CosWNN) is developed, with 

objectives to improves the real-world’s shortcoming of the following: 

• Requirement of computation resources: More powerful processors and memory are essential for signal 

processing and model training [4].  

• Limited data for Model’s training: Real-world faulty bearing data is hard to acquired due to operating 

machine is either broke down or forced stopped when fault is alerting [5]. 

2. Literature Survey 

A brief survey was conducted in this study, the recent solutions of mentioned challenges were discussed, and 

the survey finding was summarized. 

2.1 Challenges 

2.1.1 Challenge 1: Efficiency in Computation Resources 
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Signal processing and A.I. model training is associated to costly data acquisition panels and complicated 

program which increasing cost of condition monitoring system [6], [7]. Erica et. al explored an affordable-

cost and compact alternative by measuring acoustic noise and sampled by a microcontroller, however the 

vibration data transformation such as FFT (Fast-Fourier-Transform), and top-flat windowing were inevitable 

in the system [6]. Thani et. al proposed an A.I. model which analyses raw vibration data using Auto-Encoder 

as feature extractor, a classification of 90.3% (F1-score) was achieved however the model training time was 

longer [4].  

2.1.2 Challenge 2: Training of Model with Limited Data 

Most of the intelligent condition monitoring system are data-driven, the classification performance depends on 

the amount of training information [8]. Yang et. al adopted Conditional-Generative-Adversarial-Network 

(CGAN) for synthesize training data and processed it into 2-D image [8], [9]. Zhang et. al applied few-shot 

learning with pair of Siamese Convolutional Neural Networks (CNN), accuracy of 82.8% was found with only 

60 training samples in raw vibration signals [9]. 

2.2 Survey Finding 

As the survey finds, there is lack of studies which addressed the efficient computational resource and limited 

training data challenges. Therefore, CosWNN aims to perform acceptable classification results by taking data 

inputs without signal processing, while retaining performance with limited training data. 

3. Methodology 

3.1 Algorithms 

Nearest Neighbors algorithm (also known as k-NN) is a classic A.I.  method to determine the calculated 

distance between testing and training data [10]. The training data in k-NN is stored in the model rather than 

trained as compared to other A.I. methods. Hence the computation resources required for model training is 

excluded for k-NN [11].  

3.2 Hyperparameters 

In this study, multiple k-NN algorithms were evaluated using MATLAB’s Classification Learner Toolbox [12], 

subsequently the CosWNN model was developed by integrating two of the k-NN algorithms. Table 1 shows 

the algorithms studied and corresponding hyperparameters. 

Table 1. The algorithms studied and corresponding hyperparameters. 

k-NN Algorithm Abbreviation 
Quantity of 

Neighbors 

Difference 

Metric 
Weightiness 

Fine-k-NN  Fk-NN 1 Euclidean Identical 

Medium-k-NN  Mk-NN 10 Euclidean Identical 

Coarse-k-NN  Ck-NN 100 Euclidean Identical 

Cosine-k-NN  Cosk-NN 10 Cosine Identical 

Cubic-k-NN  Cubk-NN 10 Minkowski Identical 

Weighted-k-NN  Wk-NN 10 Euclidean 1/Squared 

Proposed Hybrid Model CosWNN 10 Cosine 1/Squared 

3.3 Cosine-Difference 

The proposed hybrid model is established on the Cosine-Difference [2] as below 

Dc (J, K) = 1 − Sc(J, K) 

                 = 1 −
J . K

||J||  .  ||K||
 

 = 1 −
∑ JxKx  n

x=1

√∑ Jx
2   .  ∑ Kx

2 n
x=1

n
x=1

   (1) 

Note: Dc is the Cosine-Difference, Sc is the Angular Similarity, J is the Testing data in time-series, and K is 

the Stored data in time-series. 
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3.4 Weightiness 

Encompassing Weightiness on the Cosine-Distance can potentially boost A.I. algorithms’ result compared to 

identical weight [10], [13]. The Weightiness technique manipulated in the proposed algorithm is ‘1/ Squared’ 

as shown 

wi(J, K) =
1

Dc(J,K)2                  (2) 

Note: w is the Weightiness. 

 3.5 Set of Rules 

The algorithm of proposed hybrid model is described in Table 2 as following 

Table 2. The Algorithms of Proposed Hybrid Model. 

CosWNN Set of rules 

Initial: 

  J, c, K   //  J: testing information;  c: class;  K: stored information 

for n to training information dimension do: 

  Determine the cosine-difference Dc(J,K) as illustrated in formula (1) 

end for 

  Choose the anticipated k (quantity of nearest neighbors) 

  Sort the Dc by rising sequence 

  Calculate the observation of each class of the highest k 

  Multiply the w for each observation 

Yield:  

  Delegate J to the maximum gathered w of class, c 

3.6 Data Source 

2 sets of bearing data were adopted for algorithm are: (a) Case-Western-Reserve-University Bearing (CWRU); 

(b) SpectraQuest Machinery Fault Simulator by Universiti-Teknologi-Malaysia (UTM). The explanation of the 

datasets is elaborated in Table 3.  

Table 3. The bearing description of used datasets. 

Dataset CWRU UTM 

Bearing Model 6205-2RS JEM SKF SpectraQuest customised bearing 

Motor Load (hp) 0 

Rotational Speed (rpm) 1772 1800 

Sampling Rate (Hz) 12000 8000 

Class of the condition of bearings 
No-Defect-(N), Outer-Race-Defect-(OR), 

Inner-Race-Defect (IR), and Ball-Defect-(B) 

3.7 Model Training 

Several nearest neighbors of model versions were trained with different training amount of training samples is 

listed in Table 4. All the models were tested with separate labelled samples. 

Table 4. The amount of training samples used for model training. 

Training Sample Amount T100 T80 T60 T40 T20 

No-Defect-(N) 

150 

 

120 

 

90 

 

60 

 

30 

 

Outer-Race-Defect-(OR) 

Inner-Race-Defect (IR) 

Ball-Defect-(B) 

Overall 600 480 360 240 120 

 

3.8 Quantification Of A.I Results 

Classification Accuracy is used to quantify the results of A.I. models as commonly adopted by other researchers 

[16]. The Classification Accuracy is explained as follows 
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Classification Accuracy (%) =
TP+TN

TP+UP+FN+UN
 × 100    (3) 

Note: TP =observed true positives; TN = observed true negatives; 

    UP =observed untrue positives; and UN = observed untrue negatives. 

4. OUTCOMES & discussions 

4.1 Findings 

The results of the proposed hybrid model for CWRU and UTM datasets and an average of the two datasets are 

displayed in Figure 1. Both CWRU and UTM datasets produced similar results with overall accuracy of 78.8% 

and 75.3% respectively. the highest accuracies were achieved when the amount of training samples was 100% 

utilized, and degradations were observed when the training samples were reduced. An average classification 

accuracy of 77.1% was calculated for the proposed hybrid model. 

 
Figure 1. The classification accurateness of proposed hybrid model. 

The average results are compared with other nearest neighbors are illustrated in Figure 2. All algorithms except 

for CosWNN and Cosk-NN were found to perform poorly in bearing condition’s classification below 50%. 

Cosk-NN obtained a relatively decent performance with an average of 72.7%. By integrating the weightiness 

into Cosk-NN, the proposed hybrid model showed an improvement of 4.4% over Cosk-NN. Nevertheless, 

CosWNN’s classification degradation up to 22.9% in event of the reduction of training samples were observed.  

 
Figure 2. Averaged Classification Accuracy among different Nearest Neighbors Algorithm. 

T100 T80 T60 T40 T20 Overall

CWRU 86.17% 84.17% 80.83% 78.17% 64.83% 78.83%

UTM 85.17% 81.67% 77.13% 71.91% 60.67% 75.31%

Average 85.67% 82.92% 78.98% 75.04% 62.75% 77.07%
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4.2 Discussions 

Most of the nearest neighbors’ difference metric were found to be ineffective to classify vibration signals 

without signal processing except for Cosine-Difference. The preference of Cosine distance over Euclidean and 

Minkowski distances shall be validated with other datasets, for example unprocessed signals of Machinery 

Fault Database (MaFaulDa) and Paderborn University[17]. 

Integrating Weightiness into the proposed model showed an average 4.4% over the predecessor (Cosk-NN), 

hence hybridizing Cosine-Difference and Weightiness method in the nearest neighbors could potentially 

improves the overall classification results. 

Although the proposed hybrid model showed improvement over other algorithms, an average of 77.1% 

classification accuracy is not considerable excellent, and an averaged degradation up to 22.9% when training 

samples were reduced. More improvements of the condition monitoring model are recommended to fulfill the 

objectives of this study. 

One of the recommendations is to optimize the selection of k (number of nearest neighbors) rather than using 

the default k=10. Other than that, if limited training data is available, data augmentation shall be explored as 

suggested by other studies [18], [19]. 

Conclusion 

In conclusion, this study addresses the challenges of efficient computation resources and limited training data 

in bearing fault detection by developing a hybrid monitoring model integrating cosine-difference and 

weightiness into the k-nearest neighbors algorithm. The proposed CosWNN model achieved a classification 

accuracy of 77.1%, surpassing other algorithms by 4.4% to 49.5%, especially under conditions of insufficient 

training data. Despite this improvement, the model's performance degrades significantly with reduced training 

samples, highlighting the need for further optimization, such as refining the selection of the number of nearest 

neighbors (k) and exploring data augmentation techniques. The hybrid model demonstrates potential for 

effective bearing condition monitoring with limited faulty data and minimal signal processing resources, 

warranting further validation with additional datasets and enhancements. 
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